Publications
You can also find my full publication list on my Google Scholar
Selected Publications
AI-Driven Dynamical Virtual Cells and its Mathematical Theory
stVCR: Reconstructing Spatio-Temporal Dynamics of Cell Development Using Optimal Transport
Z. Zhang, T. Li, P. Zhou. (2024).
arXiv:2410.00844Modeling Cell Dynamics and Interactions with Unbalanced Mean Field Schrödinger Bridge
Z. Zhang, Z. Wang, Y. Sun, T. Li, P. Zhou. (2025).
arXiv:2505.11197Variational Regularized Unbalanced Optimal Transport: Single Network, Least Action
Y. Sun, Z. Zhang, Z. Wang, T. Li, P. Zhou. (2025).
arXiv:2505.11823Joint Velocity-Growth Flow Matching for Single-Cell Dynamics Modeling
D. Wang, Y. Jiang, Z. Zhang, X. Gu, P. Zhou, J. Sun. (2025).
arXiv:2505.13413Integrating Dynamical Systems Modeling with Spatiotemporal scRNA-seq Data Analysis
Z. Zhang, Y. Sun, Q. Peng, T. Li, P. Zhou. (2025).
Entropy, 27(5), 453Spatial Transition Tensor of Single Cells
Zhou, P., Bocci, F., Li, T., & Nie, Q. (2024).
Nature Methods, 21, 1053–1062Learning Stochastic Dynamics from Snapshots Through Regularized Unbalanced Optimal Transport
Z. Zhang, T. Li, P. Zhou. (2025).
ICLR 2025 Oral (Top 1.8%)Reconstruct Growth and Dynamic Trajectories from Single-Cell Transcriptomics
Yutong Sha, Yuchi Qiu, Peijie Zhou, and Qing Nie. (2024).
Nature Machine Intelligence, 6, 25–39.On the Mathematics of RNA Velocity II: Algorithmic Aspects
Li, T., Wang, Y., Yang, G., & Zhou, P. (2024).
CSIAM Transactions on Applied Mathematics, 5, 182–220On the Mathematics of RNA Velocity I: Theoretical Analysis
Li, T., Shi, J., Wu, Y., & Zhou, P. (2021).
CSIAM Transactions on Applied Mathematics, 2(1), 1–55Dissecting Transition Cells in Single-Cell Transcriptome Data by Multi-Scale Reduction of Stochastic Dynamics
Zhou, P., Wang, S., Li, T., & Nie, Q. (2021).
Nature Communications, 12, 5609Inference and Multiscale Model of Epithelial-to-Mesenchymal Transition via Single-Cell Transcriptomic Data
Sha, Y., Wang, S., Zhou, P. & Nie, Q. (2020).
Nucleic Acids Research, 48(17), 9505–9520Construction of the Landscape for Multi-Stable Systems: Potential Landscape, Quasi-Potential, A-Type Integral and Beyond
Zhou, P., & Li, T. (2016).
The Journal of Chemical Physics, 144(9), 094109
Multi-Omics AI Models and Biomedical Applications
A Perturbation Proteomics-Based Foundation Model for Virtual Cell Construction
R. Sun, L. Qian, Y. Li, H. Cheng, Z. Xue, X. Zhang, L. Tan, Y. Zhan, W. Hu, P. Zhou, et al. (2025).
bioRxiv, 2025.02.07.637070Genetic Deconvolution of Embryonic and Maternal Cell-Free DNA in Spent Culture Medium of Human Preimplantation Embryos Through Deep Learning
Z. Zhang, J. Qiao, Y. Chen, P. Zhou. (2025), accepted by Advanced Science.Single-Cell Transcriptomics Reveals Aberrant Skin-Resident Cell Populations and Identifies Fibroblasts as a Determinant in Rosacea
M. Chen, L. Yang, P. Zhou, et al. (2024).
Nature Communications, 15(1), 8737The Multiple Activations in Budding Yeast S-Phase Checkpoint Are Poisson Processes
Xin Gao, Peijie Zhou, and Fangting Li. (2023).
PNAS Nexus, 2(11), pgad342.exFINDER: Identify External Communication Signals Using Single-Cell Transcriptomics Data
Changhan He, Peijie Zhou, and Qing Nie. (2023).
Nucleic Acids Research, 2023.Preneoplastic Stromal Cells Promote BRCA1-Mediated Breast Tumorigenesis
Kevin Nee, Dennis Ma, Quy H. Nguyen, …, Peijie Zhou, Qing Nie, …, Kai Kessenbrock. (2023).
Nature Genetics, 2023, 1–12.Stochasticity Triggers Activation of the S-Phase Checkpoint Pathway in Budding Yeast
Zhou, P., Gao, X., Li, X., et al. (2021).
Physical Review X, 11(1), 011004Single-Cell RNA-Seq Analysis Reveals the Acquisition of Cancer Stem Cell Traits and Increase of Cell–Cell Signaling During EMT Progression
Bocci, F., Zhou, P., & Nie, Q. (2021).
Cancers, 13(22), 5726DURIAN: An Integrative Deconvolution and Imputation Method for Robust Signaling Analysis of Single-Cell Transcriptomics Data
Karikomi, M., Zhou, P., & Nie, Q. (2022).
Briefings in BioinformaticsIntegrating Single-Cell Datasets with Ambiguous Batch Information by Incorporating Molecular Network Features
Dong, J., Zhou, P., Wu, Y., et al. (2021).
Briefings in BioinformaticsInference of Intercellular Communications and Multilayer Gene-Regulations of Epithelial–Mesenchymal Transition from Single-Cell Transcriptomic Data
Sha, Y., Wang, S., Bocci, F., Zhou, P., & Nie, Q. (2021).
Frontiers in Genetics, 11, 604585
Generative Models in AI for Science
- Using Deep Learning to Generate Key Variables in Global Climate Change Mitigation Scenarios
Li, P., Zhu, R., McJeon, H., Byers, E., Zhou, P., & Ou, Y. (Accepted).
Nature Climate Change.